

Injection System Operation and Optimization

Arcadis TechEx Antwerp, April 2024

Matt Schnobrich, PE Technical Expert / Engineer

Leader – Global Remediation Community of Practice

Lexington, KY
20 years with Arcadis

An in situ report card

FINAL REPORT

Development of an Expanded, High-Reliability Cost and Performance Database for In-Situ Remediation Technologies

ESTCP Project ER-201120

MARCH 2016

The big data from 235 remediation sites indicates:

- The 50th percentile achieve a 0.8 order of magnitude (OOM) reduction in source concentration
 - 75th percentile achieves 1.4 OOM
- Only 21% of 710 monitoring wells achieved drinking water criteria
- 7% of sites (17 out of 235) achieved drinking water criteria at all wells
 - 10 of 17 had a single monitoring well!
- For sites where "treatment train" remedies were deployed, median reduction was 2.3 OOM

Re-Thinking Our Framework

Monitoring&Remediation

Advances in Remediation Solutions

Advancing Contaminant Mass Flux Analysis to Focus Remediation: The Three-Compartment Model

by John Horst, Scott Potter, Matthew Schnobrich, Nicklaus Welty, Ankit Gupta, Joseph Quinnan

Groundwater Monitoring & Remediation 37, no. 4/ Fall 2017, 15-22

Re-Thinking Our Framework

We reassessed our data and started building aquifers to fill in missing parts

Contrasts in Permeability

Re-Thinking Our Framework – 3-Compartment Model

Groundwater flow in an aquifer is divided based on *order* of magnitude contrasts in groundwater flux

Compartment 1 (C1 or Q₉₀)

10x Average K

90% of groundwater flux (advection/transport zone)

Compartment 2 (C2 or Q₉)

Average K

9% of groundwater flux (slow advection/storage zone)

Compartment 3 (C3 or Q₁) 0.1x Average K

1% of groundwater flux (storage zone)

Permeability dictates contaminant transport ...

Mass Flux (J) = KiC

TRANSPORT
100s ft/yr

SLOW ADVECTION 1-10 ft/yr

STORAGE 0-1 ft/yr

... and the distribution of injection reagents

Tom Sale, Colorado State

- Dark layers are bentonite clay
- Light layers are quartz sand
- Source loading: Days 1 23
- Source flushing: Days 23 132

Porosity-Based Injection – Tracer Testing

ROI = Radius of influence; targeted radial distance to achieve normalized response of the injected reagent/tracer

h_{int} = Injection interval; dictated by the nature and extent of impacts

 $\theta_{\rm m}$ = Mobile fraction (of θ_{total}); primary transport pathway, assumes uniform radial distribution (~5% to ~15%)

Transport Velocity = Groundwater flow velocity; time to achieve 50% of the C_{peak}

Bulk Velocity = Average groundwater flow velocity; time for M_{half} to pass through a point

Dose Response Well (DRW)

Observation Well (OW)

Porosity-Based Injection – Tracer Testing

Dose Response Well (DRW)

Breakthrough Curve (BTC) = Tracer response versus cumulative volume (during injection) or time (post-injection) at dose response or observation wells, respectively

Observation Well (OW)

Alternative Delivery Methods – Fracturing

- Subsurface fracture deformation under high pressure injection
- Low permeability settings
- Solid/slurried reagents
- Limited delivery control
- Targets qualitative concentration goals (i.e., not MCLs)

Direct Push Technology

Hydraulic & Pneumatic

13

Injection Transect Design

23 April 2024

Dynamic

Groundwater

Recirculation

Injection/Extraction Well Layouts

Inject-and-Drift

Conceptual Injection Design

	Pre-Set Spacing (soluble)					
Trans. Spacing	200 feet					
Time	9.1 years					
# of Injections	23					
Cost	€1.26M					

- Injection designs can vary based on multiple drivers ...
 - Site access restrictions
 - Target cleanup periods
 - Substrate transport behavior (soluble vs solid)
 - Varied CSM conditions:
 - Groundwater velocity
 - Feasible injection rates
 - Depth to groundwater, etc.
- All of these impact cost.

Injection Systems

- Low cost of construction, high cost of operation
- Highly adaptable
- No permanent above ground footprint
- Best for inject-and-drift sites with limited number of planned injections

- High cost of construction, low cost of operation
- Highly adaptable
- Permanent above ground footprint
- Best for recirculation sites or sites with long-term injections or remote location

© Arcadis 2023 23 April 2024

The Old vs the New ...

Inject	tion S tion E	itart Date a	nd Time:	3/31			. (Empty		- 7	HR6E	T MOL	60% ATSES	: 4	ro 6th	LIDAY						
		West Tools					7	bT = 0	124,35	6	TAR	SET	WATO	e: 2	8,270	s GALL	DAY				T.U 3.7	that motors as used today.
	٦,			rdrant IW-1			IW-2					IW-3		IW-4			IW-5			Mo	olasses	processes seve I complete was
Tim		Elapsed Time	Flow Rate	Totalizer Reading	Flow Rate	Totalizer Reading	Wellhead Pressure	Flow Rate	Totalizer Reading		Flow Rate	Totalizer Reading	Wellhead Pressure	Flow Rate	Totalizer Reading	Wellhead Pressure	Flow Rate	Totalizer Reading	Wellhead Pressure	Flow Rate	Tank Level	0.0058' / 6m 1-25 IS
1900		(mins)	(gpm)	(gallons)	(gpm)	(gallons)	(psi)	(gpm)	(gallons)	(psi)	(gpm)	(gallons)	(psi)	(gpm)	(gallons)	(psi)	(gpm)	(gallons)	(psi)	(gpm)	(gallons)	2.5 30
09:	36			nz - 7.	atin	in	hudra	4 /	testi.	2 fin	-5								1	3-421		3.45
55 100	- 1	Ü/	200	894600																		Time molasses - Frozen sed of price. Those out.
lot	3 (So MA	80	894100	16	##J#D	N-9.	15	-6460	No.	15		mg.	14		neg.	18	3	0		480	START MOLASSES
5 1030	0 1	1200	70	847300	16	8690	H47 .	WP .	6880	nes.	ø	\$ 700	n-45.	46	6590	neg.	do.	6416	negi	1.72	454.1 T. H.= 25.9	3.60 (6 TO-15 = 000 85.86
(04)	4 1	1.700	72	~898,300	22	9720	his.	14	7090	H#5	14.7	8000	n45.	Toronto.	6590	neg-	15.3	6420	ng.	2.07	397-Z T.u.=5.9	3.76 (a=0.18 2 36gai)
N 1100		3100	76	8 99 300	ıs		heg.	М		nes.	щ		N49 ·	d 14		meg -	16	. 76	heg.	1.27	378:2 T.U.=959	3.89 / 0= on a 19.0 gu
21115		4.000	50	~9001100	9		A/3-	10		1115	9		jus.	11		neg -	X11		N-55.	1.14	361.0	3.99 (A =0.10 € 17.2 gu
114			48	901900			ne,			40,			nes.		-	Ng.			neg-	2.13	797.2 TUE/5/9	4. 36 (A=0.37 2 63. 8gal)
1215		26.5%	73	903600	[r]	1033	413-	13	8280	neg-	16	4780	1125	10	6590	H+5.	16	7930	neg.	1.95	2386	4.701 (4 = 834 2 58.6 54)
1309	5 1	39.32	H 65	907 Z80	×	11080	ht>.	*	4110	ner.		10620	A45 1		\$6598	RAS-		8930	H-5.		140.3 T.u. = 30-	5.37 (0=059' = 98.3 god
1715	•		75 100	907600	20		NG.	R		WAZ	26		447	13		hez.	22		nex	0	Tu.F	Hulasses off - molasse below cone, unable to
132	- 1	2,900	160	909000	20			12			23 24			13			22	3/				volume used
134	ID	Inices >			10			13			16			13			18		Q.			molasses on
140	50	15,800	55.92	911900	27			20	-		20			15			22					
	1	≈ 141.47		100	_													,	1			~
143	,		100	25600																		
152	D		60	918700																		
154	15		42	919700																		
154	2		30	920 500										,								molasses out.
	_			924134	9	21500														_ 6	01 -	Stor water on's @ 915,470

© Arcadis 2023 23 April 2024

Field Data Collection and Power BI

- Injection optimization occurs in *real* time and *over* time...
- Requires attentive staff and direct connection between office and field crews

23 April 2024

21

Porosity Reduction

Mineral precipitation and biofouing

- Slow formation
- Persistent
- Minor reduction in injection capacity, but increasing over time

Gas accumulation

- Rapid formation
- Transient
- Large reduction in injection capacity

Di Arcadis 2023 23 April 2024

Porosity Reduction

23 April 2024

Well Fouling

Mineral Precipitation: Granular texture, low visible extra cellular polymer (ECP)

Biomass: Gelatinous texture, large quantities of ECP

Biomass Removal: Hydraulic Response

Injection and Extraction Recirculation

- 380 total dual-purpose injection / extraction wells
- > 140 million liters extracted
- > 133 million liters injected
 - Molasses
 - Emulsified vegetable oil
 - Calcium polysulfide
- 5 years sustained operation

© Arcadis 2023 23 April 2024 **27**

28

Well Redevelopment

Well Installation

Surge block Air Lifting

Physical

Chemical

Well Maintenance

Brushing Surging **Jetting**

Mud Dispersants

Acids **Antibacterial Agents**

Our Best Innovation: YOU

Adaptive operations include:

- Injection volumes
- Substrate dosing and type
- Bioaugmentation
- pH adjustment
- Injection sequencing
- TISR

